Exercise 32

Show that the function is continuous on its domain. State the domain.

$$
g(x)=\frac{\sqrt{x^{2}-9}}{x^{2}-2}
$$

Solution

The numerator, $\sqrt{x^{2}-9}$, is a square root function, so it's continuous at all numbers in its domain. The denominator, $x^{2}-2$, is a polynomial function, so it's continuous at all numbers in its domain: $(-\infty, \infty)$. The ratio of these functions given by $g(x)$ is continuous at the numbers that both the numerator and the denominator are continuous at, provided that the denominator is not zero. Find the domain of the numerator.

$$
\begin{gathered}
x^{2}-9 \geq 0 \\
x^{2} \geq 9 \\
x \leq-3 \quad \text { or } \quad x \geq 3
\end{gathered}
$$

Then find where the denominator is zero.

$$
\begin{gathered}
x^{2}-2=0 \\
x^{2}=2 \\
\sqrt{x^{2}}=\sqrt{2} \\
|x|=\sqrt{2} \\
x= \pm \sqrt{2} \approx \pm 1.414
\end{gathered}
$$

Neither $-\sqrt{2}$ nor $\sqrt{2}$ are less than -3 or greater than 3 , so the numerator's domain doesn't need to be modified. The domain of $g(x)$ is therefore

$$
x \leq-3 \quad \text { or } \quad x \geq 3 .
$$

This is reflected in the graph of $g(x)$ versus x.

